Mapping functional connectivity based on synchronized CMRO2 fluctuations during the resting state

نویسندگان

  • Changwei W. Wu
  • Hong Gu
  • Hanbing Lu
  • Elliot A. Stein
  • Jyh-Horng Chen
  • Yihong Yang
چکیده

Synchronized low-frequency fluctuations in the resting state functional MRI (fMRI) signal have been suggested to be associated with functional connectivity in brain networks. However, the underlying mechanism of this connectivity is still poorly understood, with the synchronized fluctuations could either originate from hemodynamic oscillations or represent true neuronal signaling. To better interpret the resting signal, in the current work, we examined spontaneous fluctuations at the level of cerebral metabolic rate of oxygenation (CMRO2), an index reflecting regional oxygen consumption and metabolism, and thus less sensitive to vascular dynamics. The CMRO2 signal was obtained based on a biophysical model with data acquired from simultaneous blood oxygenation level dependent (BOLD) and perfusion signals. CMRO2-based functional connectivity maps were generated in three brain networks: visual, default-mode, and hippocampus. Experiments were performed on twelve healthy participants during 'resting state' and as a comparison, with a visual task. CMRO2 signals in each of the above mentioned brain networks showed significant correlations. Functional connectivity maps from the CMRO2 signal are, in general, similar to those from BOLD and perfusion. In addition, we demonstrated that the three parameters (M, alpha and beta) in the biophysical model for calculating CMRO2 have negligible effects on the determination of the CMRO2-based connectivity strength. This study provides evidence that the spontaneous fluctuations in fMRI at rest likely originate from dynamic changes of cerebral metabolism reflecting neuronal activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microsoft Word - ISMRM2009-000775.DOC

INTRODUCTION Synchronized low-frequency fluctuations in the resting-state functional MRI (fMRI) signal have been suggested to be associated with functional connectivity in brain networks (1). However, the underlying mechanism of this connectivity is still poorly understood. To better interpret the resting signal, we examined spontaneous fluctuations at the level of cerebral metabolic rate of ox...

متن کامل

Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging

Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...

متن کامل

Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest.

Recent studies have demonstrated large amplitude spontaneous fluctuations in functional-MRI (fMRI) signals in humans in the resting state. Importantly, these spontaneous fluctuations in blood-oxygenation-level-dependent (BOLD) signal are often synchronized over distant parts of the brain, a phenomenon termed functional-connectivity. Functional-connectivity is widely assumed to reflect interregi...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Brain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 45 3  شماره 

صفحات  -

تاریخ انتشار 2009